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Abstract-The densification of a metal powder compact containing hard spherical inclusions is
modeled. The inclusions are rigid and isolated, while the surrounding matrix material deforms
according to a homogeneous non-hardening compressible plasticity description. Solutions are
obtained for the limiting cases of small and large inclusion volume fractions and approximate
solutions are derived for intermediate inclusion concentrations. These analytic results are shown to
be in good agreement with complete finite difference solutions. The presence of inclusions increases
the work required to densify the matrix by less than 15%, however the density is shown to
asymptotically approach a non-uniform distribution.

1. INTRODUCTION

A composite material, consisting ofhard spherical particles in a metal matrix can be created
by forming a mixture of the matrix material, in a powdered form, and the particulate
inclusions. This powder compact can then be densified by the application of a combination
of pressure and temperature. When the primary mechanism is diffusion, the process is
known as sintering. In this analysis we consider the application of a large hydrostatic
stress to the compact such that the densification mechanism is time-independent plastic
deformation. At elevated temperatures, when the deformation is time dependent, the process
is known as hot isostatic pressing or HIPing. Ashby (1990) discussed the various mech
anisms of densification.

We consider the powdered matrix material to be a voided material which deforms
according to the compressible plasticity model proposed by Gurson (1977). The Gurson
model has been derived for relatively small levels of porosity. Ashby (1990) describes small
porosity densification as stage 2, or final stage densification. Here, we consider a non
hardening material and further assume that elastic effects are negligible, so that the material
can be modeled as rigid-perfectly plastic. The composite compact is then modeled as a
single rigid spherical inclusion surrounded by a porous spherical shell described as a rigid
perfectly plastic Gurson material. Mear and Durban (1989) consider the similar problem
of the spherically symmetric deformation of a Gurson material shell with a stress-free inner
boundary.

We begin by analysing several uniform stress and deformation states that relate to
limiting cases for the densification of particulate composites. Non-uniform analytic solu
tions are obtained for the spherical problem for an initial uniform porosity state as well as
asymptotically as the porosity approaches zero. Finally, the full numerical solution to the
problem is presented.
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2. GURSON COMPRESSIBLE PLASTICITY MODEL

In this analysis we consider a rigid-perfectly plastic, i.e. non-hardening matrix material.
Hutchinson (1987) provides a general treatment of Gurson's model applied to hardening
materials. Based on the assumption that the matrix yields according to the von Mises yield
condition, Gurson (1977) has developed a yield function cI> for a material which contains a
dilute concentration of spherical voids:

3I:~·I:~· (I:kk )cI> = ~+2/cosh -2 -(1+F) = 0,
2u; uy

(1)

where uy is the current flow stress of the matrix material, I:;j is the deviatoric stress acting
on the voided material, I:kk /3 is the mean stress and 1 is the void concentration. Based on
the assumption that the voids remain spherical during densification, the associated flow
rule is given by

(2)

where Bij is the strain rate tensor, A is a constant of proportionality and (jij is the Kronecker
delta. In order to satisfy mass conservation, the porosity must evolve according to the
relation

j = (1- f)Bkk. (3)

This formulation allows for a general hardening material in which uy would also be a
function of the strain history. However, here we consider a perfectly plastic matrix material
where uy is a constant and we introduce the following nondimensionalization:

so that eqns (1) and (2) become

(4)

cI> = 3U~U;j +21cosh (U;k)_ (1 + 12 ) = 0

and

(5)

(6)

3. DENSIFICATION UNDER SIMPLE MODES OF DEFORMATION

Some insight into the behavior of the porous material during densification can be
gained by analysing a number ofelementary deformation modes. In the limiting case ofzero
inclusion volume fraction, the deformation of the powder compact is purely hydrostatic. On
the other hand, at the boundary of a spherical inclusion, the deformation is uniaxial strain
since the radial displacement must be zero. Thus, in the limit of large inclusion volume
fraction (VI ~ 1), the deformation is uniaxial throughout the matrix. To analyse these two
cases, we consider an initially homogeneous body under uniform applied tractions so that
the stress state is constant throughout the body. From eqn (6) it is clear that the strain
history, and thus the porosity, are independent of position as well.
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Uniform hydrostatic pressure
For a material without inclusions under applied pressure P, the stresses throughout

the body will be hydrostatic, given by (Jij = - PlJij. The deviatoric stress vanishes and, from
eqn (6), the strain increment is also hydrostatic, eij = elJij.

The governing equations for this deformation are

e= -AI sinh (%P)

and

j = 3(1- f)e.

Now eqn (7) can be solved for P(f) and I(P) explicitly:

{
I+ 12}

P = ~ arccosh 2T = ~ In (Iff)

or

1 = exp( -%P).

(7)

(8)

(9)

(lOa)

(lOb)

From eqn (9) the relationship between an incremental porosity change and the cor
responding incremental volume change is

dV dl
V=I-F (II)

The energy per unit final (fully dense) volume required to densify from porosity 10 to 1
under monotonically increasing hydrostatic pressure is calculated using eqns (10), (II) and
Vm = V(I- f):

I If 2 If InlW(fo,f) = -y- P(f)dV="3 2 dl
m fo fo (I-f)

which can be integrated to give

where

ljJ(f) = (1- f)lf/(l-fl.

(12)

(13a)

(l3b)

Note that as in the limit as 1 -+ 0, ljJ(f) -+ 1, so that, while the pressure required to fully
densify the material grows without bound [eqn (10)], the energy required to fully densify
the material under hydrostatic loading is finite:

(14)

Equations (10) and (14), corresponding to uniform hydrostatic densification, are used to
normalize the results obtained for more complex states of strain.
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Uniaxial straining
Next consider the state ell ¥- 0 (all other strain increments are zero), which approxi

mates the deformation of the matrix around an inclusion in the limit VI --+ 1. Let P = - a II

and S = -a22 and note that, due to axial symmetry, S = -a33' Clearly then a;
= 3/2a;ja;j = (S_P)2 and S' = 1/3(S-P). The yield condition (5) is thus

(15)

Setting e22 = e33 = 0 in eqn (6), we obtain

(16)

Combining this result with eqn (15), we obtain an expression in the single unknown akb

(17)

Using identities for the hyperbolic functions, this can be solved for !(akk) as well as akk(f) :

cosh (a~k)+J2sinh C~k)
! = -------:-----:---

1 . h2 (akk )-sm -2-

From eqn (15) and (19) the normalized effective stress is

so that

The work done by a monotonically increasing pressure P is determined explicitly as

W If P(f) d
(fo'/) = - fo (1-1)2 f,

where P(f) is given by eqn (21).

(18)

(19)

(20)

(21)

(22)

4. DENSIFICATION AROUND A SPHERICAL INCLUSION

Plastic deformation during the densification of a powder compact which contains hard
particles is modeled by considering a single spherical particle of radius a surrounded by a
shell ofdilutely voided matrix material of initial outer radius B. The initial inclusion volume
fraction is thus VIO = (alB)3. The matrix is assumed to obey the Gurson yield condition (5)
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with the associated flow rule. It is assumed that the inclusions are much larger than the
voids, yet they are small in comparison to the inter-particle spacing.

This spherical shell is deformed by application of a monotonically increasing radial
stress P = - (Jrr to the outside of the sphere which has a radius b at some instant during the
deformation and thus has an instantaneous inclusion volume fraction VI = (a/b)3.

The average porosity in the shell is

(23)

where V, is the instantaneous volume of the shell and Vv is the current volume of voids in
the shell. Alternatively, 1may be determined by averaging the radial porosity distribution
as

I i 3 fb1 = V fdV = f(r)r 2 dr.
, v, (b 3 _a3

) a
(24)

Finally, 1 can be determined as a function of the current shell volume in terms of the
initial shell volume Vo and initial average porosity 10 :

(25)

This follows immediately from the incompressibility of the matrix material and inclusions.
The relationship between initial and instantaneous inclusion volume fractions is thus

VI = 1-10 +vIO(1o - J)' (26)

The fully dense inclusion volume fraction Vif is determined from eqn (26) with 1 = 0
and the instantaneous volume fraction is given in terms of the final volume fraction by

I-VIf
VI = 1- 1 f- .

- VIf
(27)

For the spherically symmetric problem the only non-zero stresses are (Jrr and (J88 = (J.p</>.

It is useful to note that in the Gurson yield function and associated flow rule, the mean
stress appears only in terms which are multiplied by f, while the von Mises effective stress
only appears in porosity-independent terms. For this reason we can consider these stresses
to be the fundamental stress unknowns for the problem, and thus make the change of
variables:

The yield function (5) is thus

The non-zero strain increments are radial and tangential, given byeqn (6):

8rr = A(2D+f sinh M) == A!r

888 = A( - D+f sinh M) == Afo,

(29)

(30)

(31)
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where f,.,18 are functions of stress introduced to simplify the notation. The porosity is
incremented according to eqn (3) :

j . . +2'1_ f = ekk = err eoo·

For the spherically symmetric stress state the equilibrium equation is

(32)

(33)

where r is the Eulerian radial coordinate and (fij is the Cauchy stress. In terms of M and D,
equilibrium is thus

r o(M+D)
"3 or +D = O.

Compatibility for the spherically symmetric problem is expressed as Brr = 0(r800)/or or

(34)

(35)

It is possible to solve the compatibility equation for A. as a closed form function of stress
and porosity by first noting that eqn (35) is a first-order separable equation in Aand then
integrating:

,it (Jr r o!o +(fo- f,.) d)- = exp - ur r,
,ita a Itr 0

(36)

where ,ita is given by specifying the densification rate at the boundary through eqns (30)
(32) which is equivalent to specifying the applied stress. Thus, if at some instant we know
the stress state, we can explicitly determine the strain increments in terms of the factor Aa•

The rigid inclusion boundary condition is expressed as u = v = 800 = 0 at R = a. This
boundary condition is a state of uniaxial strain, thus we obtain expressions for M and D at
r = a as functions of the porosity at a from eqns (19) and (20):

Da = -)3+ f~ -2J2+2f~

{
-I +J2+2f~}

M a = -arccosh fa . (37)

Note that Da is always negative and reaches its greatest magnitude at f = 0 where Da =
1-}2.

It is often mathematically convenient to consider fa to be the independent variable
rather than the applied external pressure P. Clearly under monotonically increasing P, the
porosity at the boundary will be monotonically decreasing, thus there will be a one-to-one
correspondence between P and fa, and the two points of view are equivalent.

5. APPROXIMATE SOLUTIONS

The complete solution to this system of equations is to be solved by specifying some
initial porosity distribution and then integrating to obtain porosity and stress as functions
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of both the radial coordinate r and the applied external pressure P. This must be done
numerically. However, some insight into the behavior of the system can be gained by
considering a number of simplifying cases.

We first consider the case of uniform porosity, that is f "# fer). This may be used as
an initial condition for the problem. Additionally, f = 0 is considered as a possible full
density limiting case; however it will be seen that for constant f « 1, j is not independent
of r. Thus, for any finite initial f, the solution will diverge from the constant f solution.

We next consider a uniform mean stress. For the large stresses encountered near full
density, the deviation in the mean stress is small by comparison with the applied pressure.
However, the constant mean stress solution is strictly valid only for a particular (non
uniform) porosity distribution.

Finally, we consider the full system of equations in the limit f ~ O. A solution is
developed in the form f oc f,.(r) where f,.(r) is independent of the applied pressure. This
solution shows good agreement with the full numerical results.

In each approximate solution we determine D, M and f as functions of r and the
porosity at the inclusion boundary fa. Given these functions we then determine the applied
pressure P as a function of the average porosity 1 for a given inclusion volume fraction.
From the inclusion volume fraction we can determine the current outer radius b from eqn
(25). fa can then be determined for the specified1and busing eqn (24). Finally we calculate
PCb) from D(b) and M(b) using eqn (28). Note that the inclusion fraction may be specified
as initial or final, as in either case we can determine the instantaneous volume fraction
using eqn (26).

Uniform porosity
Typically we consider an initial undeformed state where the porosity is uniform. For

this case the yield function can be differentiated to obtain oM/or as a function of D, its r
derivative and the constant f:

2D_oD
oM or

or - J(l + f2 _D2)2 -4f2
(38)

Substitution of this expression into equilibrium (34) yields a first-order separable o.d.e. in
D and r (with f as a parameter)

(39)

which can be integrated to obtain the closed form expression for r as a function of D:

(40)

Now M can be determined from eqn (29), thus we have determined M and D as
implicit functions of r. It is notable that for f« 1, eqn (40) simplifies to a quadratic which
can be solved explicitly for D(r) :

(41)

M is given by eqn (29) so that P is determined explicitly as

SAS 31-22-0
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Fig. I. Comparison of the deviatoric stress and porosity distributions for the three approximate

solutions.

2{ (1 +P - D~) }P == 3" •arccosh 2/ -Db, (42)

where Db is a function of / and VI given by eqn (40) or (41). Plots of D as a function of r
obtained from eqns (40) and (41) for / = 0.25 and in the limit / -!' 0, respectively, are
shown in Fig. 1.

Uniform hydrostatic stress
Consider a mean stress M that is uniform in r, that is a function ofthe applied pressure

P only. With this condition the equilibrium eqn (34) becomes simply

roD
--+D=O
3 or '

(43)

which has the solution
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(~)3 =~.r Da

3067

(44)

Now if we specify fa, we immediately obtain M a and Da from eqn (37), thus we know the
full stress state as a function of r and fa so that we can determine P as a function of VI :

Finally, I is obtained as a function of r and fa through eqn (29) :

I = cosh M - J cosh2 M +D 2
- 1.

lis then determined as an explicit function of fa by evaluating eqn (47)

where

(45)

(46)

(47)

Thus eqns (45) and (47) determine P as an implicit function of! Plots of D and I as a
function of r obtained for the M = constant case from eqns (44) and (46) for fa = 0.25 and
in the limit fa -+ 0, are shown in Fig. 1.

Asymptotic solutionlor 1--+ 0
Differentiating the yield function (29) with respect to r, considering f, M and D all to

be functions of r, and making the assumption that F « 1 in eqns (AI) and (29), we arrive
at a differential expression for I in terms of D and r

al = _[3D+r{I_~}aDJar.
I D2 -1 ar r

(49)

Under the assumption of infinitesimal f, the compatibility eqn (36) also simplifies to
yield Aas a function of D and r

aD
aA 3D+r(l-D)a;:- ar
-=2 -
A D2 -1-2D r

(50)

By letting (1- f) -+ 1 in the porosity evolution eqn (32), differentiating with respect to r
and combining with eqn (50), we obtain

aD
aj 3D+r(l-D)a;:- ar 2D aD
--.- = 2 - +-- - ar.
I D2

- 1- 2D r D2
- 1 ar

(51)

Along with the stress eqn (49) we have developed a pair of coupled partial differential
equations in D, f, j and r.

Now if we look for solutions in which I is separable into the product of functions of r
and P as I = falr(r), then clearly j = Ir(r) j;, and we can write
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(52)

By equating expressions (51) and (52), we obtain a single ordinary differential equation for
D(r) which can be integrated to obtain a closed form expression for r(D) :

(53)

where Da -+ I-J2 as 1 -+ 0 from eqn (37). Additionally, we obtain 1 as a function of D,
and therefore r, through eqn (53) :

1 (1 +D)(l-Da) {2(Da-D)}
la = 1+Da I-D exp (Da l)(D-l)' (54)

where fa is the (pressure-dependent) porosity at the rigid inclusion boundary. Now to
complete the analysis we need to determine the porosity at r = b, };, in terms of! so that
we can calculate M from the yield condition. From eqn (54) we determine 1 as a function
of D(r) and};,:

1 (I +D)(l-Db) {2(Db -D)}
};, = l+Db I-D exp (Db-l)(D-I) .

We then obtain the volume average porosity1from eqn (24),

- 1 fb dr
1 = b3 _03 a l(r)r

3
3 r '

(55)

(56)

where r3 is a known function ofD from eqn (53) and 3dr!r is given by eqn (AI 5). Therefore,
we obtain a closed form expression for 1:

(57)

It is important to recognize that this is a function of the inclusion volume fraction only
since Db is known from eqn (53). Now from the yield condition we can derive P as a
function of Db and };, and thus as a function of the inclusion volume fraction and the
average porosity:

2 { (l-D~)}P = 3" arceosh 2};, -Db' (58)

The deviatoric stress porosity distributions for the asymptotic solution are shown in
Fig. 1 for comparison with the uniform mean stress and uniform porosity solutions. The
asymptotic solution shows the greatest influence of the inclusion at any volume fraction.
Thus, use of the simpler approximations could lead to under-estimating the pressure
required for densification.
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Comparison of solutions for small f
Figure 2 shows a comparison of PIPh for the three analytic solutions as well as the

results of the numerical calculation. The pressure vs porosity relations derived for the three
approximate solutions are each of the form

(59)

where p and Db are weak functions of f. For small f, the inverse hyperbolic can be
approximated by a natural log

(60)
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Fig. 2. Applied pressure as a function of average porosity for 25% and 50% final, or fully dense,
inclusion volume fractions. Uniform porosity, uniform stress and asymptotic solutions are compared

with the complete numerical solution with a uniform 25% initial porosity.
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Fig. 3. Radial porosity distributions for an initial matrix porosity 10 = 0.25. Curves represent
approximately equal applied pressure increments. Lines a, b, c, d show the path of the outer
boundary for the initial inclusion fractions VIO = 0.9, 0.5, 0.25, 0.05, respectively. These volume

fractions are also referenced in Figs 4-5.

so that we can normalize by the exact expression for VI = 0 [eqns lOa, b] :

P In fJ-Db rx
Ph = 1+ In(l/!) = 1+ In (I!!)"

(61)

For the uniform porosity approximation, rx is given by

rx = In(l +p -D~)-Db' (62)

where Db is found from eqn (40) or (41). It can clearly be seen from Fig. 1 that D is a weak
function off so that rx depends primarily on the inclusion volume.
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Vlo Vu
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b 0.50 0.57
c 0.25 0.27
d 0.05 0.06

Inclusion Volume Fracliclns

2.52.01.51.0
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0.5

0.80

0.85

0.95

1.00

0.90

1- f

Fig. 4. Densification with initial matrix porosity 10 = 0.25 for various initial inclusion volume
fractions. Curves for VIO = 0 and VIO = I are obtained from eqns (10) and (21).



Densification by plastic deformation around spherical inclusions 3071

0.950.85 0.9

I-J
0.8

1.:l--:=::;::::=:::::;===:;=:==::;:::=~
0.75

1.1

LOS

(a) 1.15

(b) 1.20

us

w
-W 1.10

h

1.0S

1.00

0.75 0.80 0.8S 0.90

1- T
0.9S 1.00

Fig. 5. Pressure and work to densify normalized by corresponding quantities for pure hydrostatic
densification (VI = 0) given by egns (10) and (13).

For the uniform mean stress solution, (X is given by

(63)

where fa must be determined as a function of1through eqn (47). This is a very cumbersome
formulation.

Finally, for the asymptotic solution, (X is

(64)

where11fi, is given as an explicit function of Db by eqn (57) and Db is a function ofinclusion
volume fraction only through eqn (53).

6. NUMERICAL SOLUTIONS

A full solution to the system [eqns (29)-(37)1 was obtained by an explicit integration
technique. The system of equations is completed by the specification of an initial porosity
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Fig. 6. Deviatoric stress and porosity distributions during densification for an initial matrix porosity
10 = 0.25. Asymptotic curves are from eqns (53) and (54).

distribution, as well as an applied load history. Here we assume a uniform initial porosity
and increment the porosity at the rigid boundary from its initial value to zero.

Using the inner boundary state, as opposed to the more intuitive external applied
pressure, as a load parameter has two distinct advantages. Most importantly this allows
the radial integration at each load increment to be formulated as an explicit "marching
scheme", whereas specifying the applied pressure would require an iterative technique to
match the inner boundary condition. Moreover, the integration can be carried out to an
arbitrary external radius, thus providing solutions for a continuous range of inclusion
volume fractions from a single integration. The details of the numerical calculation are
given in Appendix B.

Figure 3 shows a typical densification history for a 25% uniform initial porosity. The
plot is constructed such that the increment in P at r = 3 is a constant. Initially the most
rapid densification takes place at the inclusion boundary, however subsequent densification
is more uniform. The lines marked as a, b, c and d represent the path of a material point
at the outer boundary for a particular initial, or final, inclusion volume fraction. The key
to this is shown inset in Fig. 4, which is constructed by determining 1 from eqn (25) for
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Fig. 7. Development of the porosity defect parameter Xduring densification for an initial uniform
marix porosity 10 = 0.25. Xis given by eqn (65).

each of these points. It can be seen that the pressure required to yield the material at any
given1 is bounded by the pressure required to deform the material under hydrostatic and
uniaxial strain conditions. As these bounds are fairly tight, the effect of inclusion volume
fraction is small.

Figure 5(a) illustrates the volume fraction effect by normalizing the same data from
Fig. 4 by the pure hydrostatic pressure required to yield the porous material at the same
void volume fraction. The pressure required in the composite is at most 15% greater than
the hydrostatic pressure which consolidates an unreinforced material. In the limit as full
densification is approached all of the solutions converge. Note that we are normalizing by
a quantity which is singular as j --+ O. Figure 5(b) shows the plastic work per unit fully
dense matrix volume performed during the densification as determined by eqn (12) and
normalized by the hydrostatic work from eqn (13). These quantities are all bounded asj--+
oand we see that there is a finite increase in the work required to fully densify a quantity
of material with increasing inclusion concentration.

Figure 6 shows the deviatoric stress and porosity distributions obtained from the
numerical solution for a 25% initial porosity. The numerical results clearly approach the
asymptotic solution, which is shown for comparison.
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The effect of the non-uniform porosity distribution can be more clearly seen by defining
a defect parameter in terms of the ratio of the maximum porosity to the average porosity:

x = 1-Imaxl! (65)

For this problem the largest porosity is always far from the inclusion. Figure 7 shows Xas
a function of inclusion volume fraction and as a function of average porosity for a number
of inclusion fractions. The defect parameter clearly diminishes as the volume fraction
becomes small, however for a fraction as small as 20%, the defect will be of the order of
5%.

7. CONCLUSIONS

In terms of observable quantities, i.e. the applied pressure Pb and the average porosity
f, which equals one minus the average relative density, the implication of these results are
that the pressures required during densification of a material containing rigid particulates
will be at most 10% greater than those required to densify the same material without the
inclusions. The extreme situation corresponds to densification under uniaxial straining.
Likewise, the work required to densify a volume of matrix material is shown to be bounded
by the work to densify the same material under uniaxial strain conditions, which is at most
20% greater than the work required to densify under hydrostatic straining. However, the
porosity in the matrix in regions far from inclusions may be as much as 7% greater than
the volume average.
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APPENDIX A: ASYMPTOTIC SOLUTION FOR f -+ 0

Differentiating eqn (29) with respect to r and considering f, M and D all to be functions of r leads to the
expression

aM
a;:-= (AI)

This expression is generally valid for large f, however it has been assumed that the mean stress is compressive
everywhere. We now make the assumption thatf2 « 1 in eqns (AI) and (29):

aM
a;:-=

aD 2 I af
2D-+(I-D )--

ar far

I-D 2
(A2)

2fcosh M = 1-D2
•

Substitution of eqn (A2) into the equilibrium eqn (34) yields

2DaD 1 af aD 3D
0= +--+-+-.

(1-D 2)ar far ar r

We can also use eqn (A3) to calculate the sinh M function for f « I :

(A3)

(A4)
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J[I-D2
J2 [1-D2

JsinhM= ±jcosh2 M-1 = ± 2f -I ~ ± 2f = -coshM,
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(AS)

where we have used the assumption that the mean stress M is compressive, as well as the requirement that D 2 t= I.
It can be argued that D reaches its largest (negative) value at the rigid boundary and as};mptotically goes to zero
with increasing r, hence it can be easily shown from the boundary condition that 1-}2 < D < O. Now we can
make the substitution

into the flow rule eqns (30) and (31) :

D 2 _1
fsinhM=-

2

(
D2 _I)

t,,=A2D+-
2

- =Aj;

( D2_1)
too = A -D+ -2- = ,1.10·

(A6)

(A7)

(A8)

Significantly, we see that j; and 10 are asymptotically functions of D only, thus the ratio of the strain increments
is determined solely by the deviatoric stress. If we put these expressions into the compatibility eqn (36) we see that
dA/Ais now an explicit function of D and r as f -+ 0 :

oD
0,1. 3D+r(I-D)a; or
-=2--:----
A D2 -1-2D r

By letting (1- f) -+ I in the porosity evolution eqn (32) ;

and by differentiating with respect to r we obtain

and finally, combining eqn (All) with eqn (A9),

oD
oj 3D+r(I-D)a;or 2D oD

7 =2 -+---or.
D2 _ I - 2D r D2 - I or

(A9)

(AIO)

(All)

(AI2)

Along with the stress eqn (A4) (solved for of/f) we have developed a pair of coupled partial differential
equations in D, f, j and r:

of = -[3D+r{I-~}ODJ~.
f D 2 _1 or r

(AB)

Now if we look for solutions in whichfis separable into the product offunctions ofr and P asf = f(r)fp(P)
then clearly j = fer) jp and we can write

oj of
7=Y· (AI4)

Two implications of this are that D is a function of r only and that Ais also separable into the product of an
r-dependent term and a pressure-dependent term. By equating expressions (AI2) and (AB), we obtain a single
ordinary differential equation for D(r) :

oD

[ {
2D }oDJor 3D+r(I-D)a; or 2D oD

- 3D+r 1--- - -=2 -+---or
D2 _ I or r D2 _ I - 2D r D2 _ I or

oD

[
oDJor 3D+r(I-D)a; or

- 3D+r{I}- -=2 -
or r D2 -1-2D r
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[ aD] aD- 3D+r- [D2 -1-2D]=6D+2r(I-D)-
or or

(AIS)

Integration of eqn (AIS) results in a closed form expression for reD),

(a)3 D (2(Da-D»)
~ = Daexp (Da-I)(D-I) , (AI6)

where Da -+ I-J2asf -+0 from eqn (37). Additionally, eqns (AIS) and (A13) can be combined to obtain

which is easily integrated to yield f as a function of D, and therefore r, through eqn (AI6):

f (l+D)(I-Da ) (2(Da-D»)7.= I+Da I-D exp (Da-I)(D-I) ,

(AI7)

(AI8)

where fa is the (pressure-dependent) porosity at the rigid inclusion boundary. Of course, given f and D, M and
thus all of the stress components are found as functions of r through eqn (A3).

APPENDIX B: NUMERICAL SCHEME

The integration is carried out by discretizing the r- Ji, space and writing the equations such that XI},
representing the unknown value of the variable X, depends only on the previously calculated values Xi_I} and
Xii-I' We have used a forward Euler integration in the radial coordinate so that

ax\ X'i-X,-Ii
-a;: i-I] = Ti) - T;_ I) ,

(BI)

where rij is the current Eulerian coordinate of point ij. Incremental integration was performed using backwards
Euler derivatives, as this proved to be most stable

(B2)

The formulation utilized contains only first derivatives.
With this discretization ofthe derivatives we obtain a non-linear system ofequations in the primary unknowns

(1", (100 and u at point ij.f, tm too,f"jQ and r are all explicit functions of the primary unknowns. Because we have
used a forward difference in r, the (linear) expressions for u, rand (1" decouple from the remainder of the system:

.=. (R.-R ){I-fo (RI_I+U,_t)2_ 1}
U, U,_ I + , ,- I I I' R

- Ji-l i_lU,'_1

r, = R,+uj

[
(1"-(100]

(J,,,;::::;::' t1rri_ 1+2 --- (r,.-rl_ I),
r i-I

(B3)

(84)

(Bs)

where R is the undeformed coordinate, fo is the initial porosity, and all variables are evaluated at the current
increment so that the second subscript can be omitted without ambiguity. In deriving these expressions we have
integrated eqn (32) to obtain

(
I-f)-In 1- fo = 8kk = 8,,+2888

and used the finite deformation expressions for 8 in terms of the Eulerian coordinate r,

B" = -In (l-oulor)

800 = -In (1 - ulr),

as well as the equilibrium eqn (33).

(B6)

(B7)

(B8)
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The remaining unknowns at node ij can now be determined by specifying O"OOlij' f is determined from eqn
(46),f, andfo form their definitions [eqns (30), (31)],£00 is determined from eqn (88) and finally £" is found from
eqn (86). 0"00 is then determined iteratively by satisfying the flow rule

(89)

where the backward Euler expression for the strain increments (82) has been applied.


